Analytic Solution of Homogeneous Point - Delay Systems . the First Order Case
نویسنده
چکیده
New fonnulae providing exact explicit solutions for a class of scalar delayed systems are given.
منابع مشابه
Non-homogeneous continuous and discrete gradient systems: the quasi-convex case
In this paper, first we study the weak and strong convergence of solutions to the following first order nonhomogeneous gradient system $$begin{cases}-x'(t)=nablaphi(x(t))+f(t), text{a.e. on} (0,infty)\x(0)=x_0in Hend{cases}$$ to a critical point of $phi$, where $phi$ is a $C^1$ quasi-convex function on a real Hilbert space $H$ with ${rm Argmin}phineqvarnothing$ and $fin L^1(0...
متن کاملSolvability of infinite system of nonlinear singular integral equations in the C(Itimes I, c) space and modified semi-analytic method to find a closed-form of solution
In this article, we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I, c)$ by applying measure of noncompactness and Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For validity of the results we introduce a modified semi-analytic method in the case of tw...
متن کاملStability and numerical solution of time variant linear systems with delay in both the state and control
In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملFractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کامل